400服务电话:123456(点击咨询)
电锯人第一季动漫在线观看免费陈小纭的乳液
电锯人第一季动漫在线观看免费马车上的欢乐下 小燕子
电锯人第一季动漫在线观看免费国产a在线:(1)123456(点击咨询)(2)123456(点击咨询)
电锯人第一季动漫在线观看免费幸福一家人免费观看电视剧(1)123456(点击咨询)(2)123456(点击咨询)
电锯人第一季动漫在线观看免费美味的工作女孩电影
电锯人第一季动漫在线观看免费警察锅哥1――40集
绿色维修理念,环保节能:我们倡导绿色维修理念,在维修过程中注重节能环保,减少对环境的影响。
维修服务在线评价系统,真实反馈促提升:开发在线评价系统,邀请客户对维修服务进行评价,收集真实反馈,促进服务质量的不断提升。
电锯人第一季动漫在线观看免费一路前行
电锯人第一季动漫在线观看免费维修服务电话全国服务区域:
自贡市沿滩区、东方市八所镇、广西桂林市全州县、文昌市翁田镇、庆阳市宁县、淄博市周村区、大连市中山区、洛阳市瀍河回族区、新乡市牧野区
烟台市莱州市、上饶市铅山县、龙岩市连城县、榆林市佳县、蚌埠市怀远县、屯昌县屯城镇、大庆市让胡路区、广西河池市南丹县、潍坊市安丘市、海南兴海县
十堰市丹江口市、长春市宽城区、铜川市王益区、陇南市两当县、合肥市巢湖市、琼海市石壁镇、广西柳州市融水苗族自治县、鸡西市梨树区、昆明市官渡区、三明市永安市
通化市通化县、陇南市康县、酒泉市敦煌市、乐东黎族自治县万冲镇、内蒙古包头市石拐区、内蒙古巴彦淖尔市磴口县、海南共和县、晋中市昔阳县、黄南尖扎县
怀化市芷江侗族自治县、迪庆维西傈僳族自治县、渭南市合阳县、铜仁市碧江区、衢州市龙游县、广西百色市右江区、澄迈县老城镇、内蒙古呼伦贝尔市根河市、甘孜得荣县
信阳市商城县、天水市清水县、宜昌市远安县、合肥市庐阳区、保山市施甸县、株洲市石峰区、咸宁市嘉鱼县、丽江市宁蒗彝族自治县
商丘市睢阳区、大同市阳高县、长春市绿园区、孝感市应城市、黔东南台江县、茂名市高州市
亳州市涡阳县、汕尾市城区、澄迈县瑞溪镇、厦门市海沧区、广西玉林市陆川县、广州市黄埔区
十堰市张湾区、泉州市德化县、广西桂林市荔浦市、赣州市上犹县、娄底市双峰县
大理云龙县、长沙市浏阳市、攀枝花市西区、烟台市福山区、乐东黎族自治县利国镇
宁夏吴忠市青铜峡市、无锡市新吴区、邵阳市邵阳县、济宁市梁山县、红河建水县
漳州市平和县、商丘市夏邑县、广西贺州市富川瑶族自治县、赣州市上犹县、西安市临潼区、庆阳市环县
内蒙古呼伦贝尔市牙克石市、广西防城港市上思县、晋中市太谷区、儋州市中和镇、澄迈县老城镇、肇庆市德庆县、驻马店市新蔡县、绵阳市盐亭县、儋州市东成镇、萍乡市上栗县
宁波市象山县、广西南宁市良庆区、深圳市罗湖区、辽源市东辽县、红河河口瑶族自治县
南充市仪陇县、甘孜九龙县、朝阳市北票市、新乡市获嘉县、潍坊市高密市
成都市简阳市、乐山市犍为县、深圳市坪山区、内江市威远县、茂名市茂南区、内蒙古通辽市库伦旗
湘西州凤凰县、安康市镇坪县、临汾市曲沃县、江门市江海区、阿坝藏族羌族自治州茂县、榆林市神木市、杭州市下城区
南平市武夷山市、广州市白云区、莆田市涵江区、长沙市望城区、内蒙古乌兰察布市丰镇市、黔东南麻江县
东莞市高埗镇、昆明市盘龙区、赣州市寻乌县、德阳市什邡市、白银市靖远县、遵义市湄潭县、凉山宁南县、朔州市平鲁区、西宁市湟中区
汉中市洋县、丽水市遂昌县、荆州市沙市区、张掖市山丹县、广西钦州市钦北区、内蒙古呼和浩特市玉泉区、牡丹江市绥芬河市、德州市庆云县
海西蒙古族德令哈市、晋中市祁县、红河蒙自市、漳州市芗城区、宁夏银川市永宁县
广西防城港市东兴市、曲靖市师宗县、黔南贵定县、肇庆市德庆县、玉树曲麻莱县、遵义市绥阳县、海西蒙古族德令哈市
晋中市介休市、阳泉市平定县、江门市新会区、文山丘北县、重庆市彭水苗族土家族自治县、广西贺州市富川瑶族自治县、台州市玉环市、果洛达日县、衢州市江山市
衡阳市蒸湘区、临夏和政县、遵义市红花岗区、襄阳市襄州区、齐齐哈尔市泰来县、洛阳市西工区
重庆市南岸区、东莞市厚街镇、三门峡市卢氏县、宜昌市西陵区、新乡市延津县、张掖市高台县
赣州市寻乌县、广西百色市凌云县、安阳市龙安区、澄迈县老城镇、龙岩市新罗区、黔东南剑河县、西宁市城东区
西安市碑林区、甘孜巴塘县、莆田市荔城区、东方市大田镇、张家界市慈利县
400服务电话:123456(点击咨询)
电锯人第一季动漫在线观看免费3D爆乳巨胸无码动漫在线观看
电锯人第一季动漫在线观看免费国产A级不卡片视频不卡片
电锯人第一季动漫在线观看免费丝袜美腿一区:(1)123456(点击咨询)(2)123456(点击咨询)
电锯人第一季动漫在线观看免费黄金鱼电视剧(1)123456(点击咨询)(2)123456(点击咨询)
电锯人第一季动漫在线观看免费爱爱天堂
电锯人第一季动漫在线观看免费大爷色旧网址
一站式解决方案,覆盖所有品牌:我们提供一站式解决方案,覆盖所有主流家电品牌,无论客户拥有何种品牌家电,都能享受到我们的专业服务。
维修师傅专业技能培训与考核机制完善:我们完善维修师傅专业技能培训与考核机制,确保他们具备扎实的维修技能和服务水平。
电锯人第一季动漫在线观看免费男主巨糙的有肉糙汉文0852
电锯人第一季动漫在线观看免费维修服务电话全国服务区域:
乐东黎族自治县志仲镇、漳州市南靖县、日照市东港区、重庆市江北区、佳木斯市桦川县、齐齐哈尔市建华区、绥化市安达市
内蒙古呼和浩特市武川县、万宁市万城镇、安康市汉阴县、永州市道县、直辖县天门市、大同市广灵县、岳阳市湘阴县、南阳市西峡县、广西来宾市兴宾区、温州市苍南县
沈阳市新民市、吕梁市方山县、广西桂林市阳朔县、常州市溧阳市、宜春市靖安县、十堰市竹山县
内蒙古赤峰市喀喇沁旗、商丘市夏邑县、西安市高陵区、澄迈县金江镇、昌江黎族自治县七叉镇、万宁市大茂镇、杭州市富阳区、盐城市盐都区
哈尔滨市呼兰区、泰安市新泰市、阜新市新邱区、海西蒙古族天峻县、重庆市奉节县、北京市密云区、齐齐哈尔市拜泉县
清远市清城区、成都市简阳市、上饶市婺源县、乐东黎族自治县利国镇、宜宾市长宁县
沈阳市法库县、凉山喜德县、黔东南天柱县、临高县波莲镇、内蒙古包头市固阳县、内蒙古通辽市科尔沁左翼中旗、成都市都江堰市、淮安市洪泽区、辽阳市白塔区、烟台市福山区
菏泽市成武县、宜昌市远安县、宝鸡市渭滨区、四平市公主岭市、肇庆市端州区、广西南宁市邕宁区
常州市武进区、东营市垦利区、广州市白云区、丹东市凤城市、安阳市殷都区、广西百色市田阳区
白城市洮北区、济宁市兖州区、德阳市广汉市、鹤岗市南山区、凉山布拖县
黔东南丹寨县、九江市彭泽县、南阳市社旗县、临汾市隰县、成都市都江堰市、佳木斯市汤原县、鞍山市铁西区、沈阳市浑南区
广西梧州市苍梧县、漳州市东山县、内蒙古呼和浩特市新城区、临沂市平邑县、甘孜稻城县、黔南龙里县、马鞍山市雨山区、甘孜雅江县、上饶市弋阳县
烟台市牟平区、泰安市肥城市、万宁市山根镇、榆林市神木市、商丘市夏邑县
新乡市新乡县、广州市从化区、临夏东乡族自治县、丽水市庆元县、佳木斯市汤原县、湛江市坡头区、安庆市大观区、重庆市巴南区
鞍山市海城市、潍坊市坊子区、揭阳市普宁市、宁德市寿宁县、重庆市綦江区、德州市武城县
合肥市肥东县、宜昌市猇亭区、江门市鹤山市、淮安市淮安区、平凉市泾川县、龙岩市永定区、信阳市罗山县、遂宁市射洪市
咸宁市赤壁市、本溪市溪湖区、张家界市桑植县、甘孜道孚县、吕梁市岚县、眉山市东坡区、新余市分宜县、揭阳市榕城区
汉中市留坝县、长治市武乡县、齐齐哈尔市克山县、大理剑川县、榆林市吴堡县、安庆市怀宁县、临汾市翼城县、衢州市衢江区、齐齐哈尔市泰来县
重庆市彭水苗族土家族自治县、郴州市临武县、重庆市江津区、广元市旺苍县、大连市普兰店区
内蒙古呼和浩特市土默特左旗、乐东黎族自治县志仲镇、毕节市黔西市、葫芦岛市龙港区、长沙市雨花区、临沧市云县、温州市乐清市、广西河池市凤山县、哈尔滨市方正县
直辖县天门市、红河弥勒市、西宁市湟中区、抚州市崇仁县、济南市钢城区、广西来宾市武宣县
贵阳市花溪区、长春市九台区、湘潭市岳塘区、湛江市遂溪县、德州市陵城区、永州市零陵区
张掖市临泽县、衢州市常山县、内蒙古赤峰市巴林左旗、海口市美兰区、榆林市横山区、长沙市雨花区、重庆市渝北区、运城市垣曲县、临高县东英镇
南京市江宁区、昆明市嵩明县、广西贺州市昭平县、南通市海安市、琼海市长坡镇
太原市迎泽区、新乡市封丘县、舟山市嵊泗县、广安市华蓥市、洛阳市伊川县、宁德市福鼎市、温州市苍南县、厦门市翔安区
葫芦岛市兴城市、甘孜石渠县、潍坊市昌邑市、绥化市海伦市、黔南龙里县、榆林市榆阳区、九江市湖口县、定安县龙河镇、恩施州来凤县
重庆市铜梁区、辽源市东丰县、郴州市安仁县、丹东市元宝区、南充市高坪区、泉州市洛江区
AI 能替代医生吗?专家们这样说
在医疗数字化浪潮中,人工智能(AI)正加速进入临床实践。从影像识别、检验报告到辅助决策,AI正在重塑医生的工作方式,也在悄然改变着患者的就诊体验。AI能取代医生吗?面对这位“智能医生”,患者该如何理解它、使用它?它又如何成为医生的“眼睛”与“大脑”?
近日,本报记者专访中国医学科学院阜外医院心律失常中心原主任、民盟中央卫生与健康委员会主任张澍,中国医学科学院肿瘤医院胸外科主任医师、民盟中央卫生与健康委员会副主任邵康,首都医科大学附属北京朝阳医院超声医学科副主任、农工党北京市委会联络工作委员会委员于泽兴,从心脏、肺部、超声诊断三个不同领域,探讨AI在临床中的角色与边界。
张澍:AI是“标准答案”而人的健康是主观题
当深度学习算法仅用0.8秒便可完成冠脉的三维重建,当神经网络在2000万份心电图中精准捕捉到异常波动,人工智能正在深刻改变心血管诊疗的基础逻辑。
“AI的本质是一套算法,它建立在海量的医学知识和临床数据之上。”张澍介绍,在临床应用中,配备AI技术的影像设备能够在极短的时间内,从成千上万张图像中精准定位异常病变点,协助医生识别早期心脏结构的异常、冠状动脉的钙化以及心肌的肥厚。“这种高效的判断,甚至能够超越人眼。”
在他看来,这正是人工智能的优势——速度快、处理量大、分析深入,最终目标是精准。然而,目前存在两种极端观点:一种认为AI已经能够取代医生,另一种则认为AI在医疗领域的应用并不可靠。张澍认为,通过大量案例和指南的“喂养”,AI能够迅速提供针对常见疾病和轻微病症的标准化诊断和建议。“你无法期望一个初出茅庐的年轻医生立即独立担当重任,然而,一个新入行的AI却能够整合众多资深医生的丰富经验,迅速提供标准化的解决方案。这使得AI成为辅助诊疗过程中的得力助手,尤其在处理常见疾病或那些已有标准化治疗方案的病例时,AI可充当‘虚拟医生’的角色。”
然而,张澍强调,这种能力并不能无限制地扩展。人工智能在识别“共性”疾病方面表现出色,但人类的健康问题往往是一道“主观题”,其中包含着复杂且难以量化的“个性”因素。在处理复杂的心血管疾病,如心律失常时,AI技术能够协助医生快速识别潜在风险和心电图异常。然而,要深入理解疾病发展的全身性原因和动态变化过程,医生的临床经验和对患者个体状况的精准评估则显得尤为重要。“心脏并非独立运作的器官,其健康状况及功能表现受到心理状态、整体环境、生活习惯等多种因素的共同作用。”张澍指出。
例如,焦虑的个体可能会经历胸闷和心悸等症状,这些不适感源于情绪对心脏功能的影响,而非心脏存在任何器质性问题。“即便AI技术再先进,目前它仍无法准确判断一个人是否正承受心理压力、睡眠障碍,或是家庭与环境的变动。目前我们所提供的训练数据远远不足,因为与‘心’相关的人的整体状态,往往不是仅凭临床‘指标+图像’就能完全阐释的。”张澍进一步补充道。
目前,随着AI技术从后台支持走向前台服务,它不再局限于为医生提供辅助决策,而是开始直接与患者互动,参与初步的问诊过程,问题也开始逐渐显现。“部分患者对‘AI问诊’平台抱有过分的信任,认为通过回答几个问题、获取一份报告便能替代与医生的面对面咨询”,张澍提醒,尽管AI平台能够利用算法模型初步识别患病风险并提供标准化建议,但由于它缺乏对“人心”的真正理解,有时反而可能导致病情延误。
“AI可以是一个优秀的‘起点’,但绝非‘终极诊断’系统。”张澍强调,特别是在心血管领域,许多疾病的早期迹象微弱到几乎难以察觉,例如偶尔的心悸、轻微的乏力,患者常常不以为意。然而,这些看似普通的症状背后,可能隐藏着严重的心律失常风险。这类复杂且隐蔽的病情,单凭一台AI、一次线上咨询,是无法实现精确识别的。
如何把握AI在现代临床实践中的应用?张澍生动地描述道:“从传统的水银血压计到现代电子血压监测器,从听诊器到先进的可穿戴心电监测设备,医学领域一直在进步和演变。AI的融入,正是这一持续发展过程中的一个环节,而且它代表了一次真正的革命。”
而对于患者而言,未来的医疗不是“人退AI进”,而是“人机共治”,将科技的速度与人性的温度融为一体,用AI的“理性判断”与医生的“经验推理”实现更精准的诊疗。医学AI的终极形态,并非取代人类在希波克拉底誓言下的深思,而是将机器数据的确定性转化为临床过程的潜在可能性,加速并优化诊疗流程。在这个人机共存的诊疗新时代,每一次心跳既是生物电信号,也是生命故事的独特旋律。
邵康:AI是个“好学生”但还不是“好医生”
作为深耕一线的资深胸外科专家,邵康对人工智能在医疗领域的应用有着深刻洞察:“AI就像个过目不忘的超级学霸,堪称医生的‘超级大脑’,是极具潜力的临床助手。”
从最基础的病历书写、病情录入,到门诊中的影像识别、辅助诊断,再到初步治疗方案的建议,AI几乎可以覆盖医生工作的各个环节,邵康介绍:“它的最大优势是稳定、全面、不疲劳,能承担大量重复性工作。尤其在图像处理方面,AI的表现已经超过了许多经验尚浅的医生。”
以肺结节筛查为例,传统阅片模式下,医生每看一个病人,需要手动翻阅300至400张 CT断层图像,不仅耗时耗力,还易出现视觉疲劳导致漏诊。而 AI凭借深度学习算法,可在数秒内完成全肺扫描,不仅能精准标注病灶位置,还能量化分析结节大小、密度、边缘特征等参数,并基于大数据模型给出初步良恶性概率评估。
“以往对一位患者的影像判读需5至10分钟,现在 AI辅助下仅需数秒即可完成初筛。”邵康提到,这种效率的提升,显著优化了诊疗流程,让医生得以将更多精力投入到复杂病情研判与个体化治疗方案制定中。
对于肺癌影像诊断的准确率,AI已能与经验丰富的主治医师比肩。临床实践中,医生只要输入准确的疾病相关信息,AI就可以根据指南、共识给出全面、准确的疾病诊疗方案供医生参考。
邵康直言:“对于知识更新滞后的从业者而言,部分成熟的AI系统确实展现出更强的知识储备与分析能力。”然而,在肯定技术优势的同时,邵康反复强调 AI的临床应用边界:“医学的本质是针对‘生病之人’,而非仅仅是‘疾病’。”
临床实践中,患者的基础状况、心理状态、生活环境等信息,往往是左右诊疗决策的关键变量。这些难以量化的“隐藏参数”,恰是 AI当前的技术盲区。
于泽兴:超声不是“看图说话”那么简单
当人们谈论人工智能对医疗行业的影响时,影像科常常被视为“最容易被AI替代”的领域,甚至有人断言,AI时代最先“下岗”的,将是影像科医生。
“确实,从很早开始,就有团队尝试将AI引入影像诊断,尤其在放射科领域应用较多。”于泽兴介绍,像X光片、CT片这类标准化的平面图像,非常适合深度学习算法进行训练与识别,因此AI在这些领域的发展起步较快。
不过,作为医学影像中的重要分支,超声科的情况却远比想象中复杂。于泽兴指出,虽然超声也是较早引入人工智能技术的科室之一,并积累了一定的探索经验,但要让AI真正扮演临床“决策者”的角色,还面临诸多挑战。
在甲状腺、乳腺等结构清晰、图像稳定的部位,有的软件已经具备初步的辅助诊断能力,可以在医生操作过程中自动识别结节并评估其风险等级,其表现相当于一位年轻的主治医生。
然而,这种应用目前仍局限于少数场景。“因为超声检查本质上是一个动态探查的过程,它不只是‘看图说话’,医生需要一边操控探头,一边观察屏幕上不断变化的图像,在瞬息之间捕捉关键线索。”于泽兴表示,这一过程中,医生的感知、操作和认知能力缺一不可,经验远比图像本身更为关键。
“胖的人、瘦的人,器官的位置和形态不一样,超声医生扫查时的角度、范围、按压的力度都不同,需要实时调整、因人而异。”于泽兴说。“这些操作细节,都是AI目前难以胜任的。”
那么,如果仅从图像分析来说,患者是否可以上传报告,在AI上获取“诊断建议”?
于泽兴提醒,这种做法存在不小的安全隐患,比如甲状腺的某些结节,从图像上看与恶性肿瘤极为相似,AI可能会直接标红提示风险,“但如果结合患者既往的检查记录,可能会发现这些结节原本较大,随着时间逐渐缩小,是一种良性的退变结节。而这种需要综合病史、遗传史乃至病程变化作出的判断,是当前AI尚不具备的能力。”
不过,应该看到的是,在目前超声医生资源紧张的背景下,无论是三甲医院还是基层机构,合理引入AI,将在一定程度上缓解人力压力。“技术无法取代医生的经验和判断,但它可以成为医生的工具,为他们加一双‘眼’、多一双‘手’,把专业力量用在更需要的地方。”于泽兴说。(完)(《中国新闻》报刘益伶报道) 【编辑:张子怡】
相关推荐: