400服务电话:123456(点击咨询)
金瓶梅 爱的奴隶 下载爱搞电影网
金瓶梅 爱的奴隶 下载小明永久免费
金瓶梅 爱的奴隶 下载真实迷晕系列在线观看女同事:(1)123456(点击咨询)(2)123456(点击咨询)
金瓶梅 爱的奴隶 下载国产高清免费视频一区二区三区(1)123456(点击咨询)(2)123456(点击咨询)
金瓶梅 爱的奴隶 下载少女爱上姐姐第二季
金瓶梅 爱的奴隶 下载夜勤病栋全集
维修后设备性能跟踪服务:在维修完成后的一段时间内,我们会定期对设备进行性能跟踪服务,确保设备稳定运行。
维修服务客户积分系统,兑换好礼:建立客户积分系统,根据消费金额、评价等因素给予积分奖励,客户可用积分兑换维修服务券、礼品等好礼。
金瓶梅 爱的奴隶 下载晓可耐
金瓶梅 爱的奴隶 下载维修服务电话全国服务区域:
泉州市洛江区、临汾市古县、黄南尖扎县、临高县多文镇、内蒙古巴彦淖尔市乌拉特前旗
鹤岗市萝北县、三明市明溪县、十堰市丹江口市、辽源市龙山区、文昌市重兴镇
烟台市福山区、朝阳市建平县、雅安市芦山县、襄阳市樊城区、德阳市中江县、广州市越秀区、韶关市乳源瑶族自治县
邵阳市洞口县、镇江市丹阳市、重庆市大足区、邵阳市隆回县、烟台市福山区
自贡市沿滩区、白沙黎族自治县细水乡、天津市河西区、武汉市洪山区、哈尔滨市道里区、澄迈县大丰镇
儋州市那大镇、定西市岷县、陵水黎族自治县隆广镇、七台河市新兴区、揭阳市惠来县
重庆市奉节县、湛江市徐闻县、白沙黎族自治县邦溪镇、金华市磐安县、赣州市石城县
忻州市定襄县、广西贵港市桂平市、东莞市长安镇、漳州市芗城区、洛阳市宜阳县、朔州市怀仁市、清远市连山壮族瑶族自治县、福州市永泰县、淮安市洪泽区、琼海市阳江镇
台州市路桥区、福州市福清市、定安县黄竹镇、驻马店市正阳县、内蒙古呼伦贝尔市根河市、丽水市松阳县、内蒙古赤峰市敖汉旗、黔西南普安县
济南市平阴县、沈阳市和平区、淄博市高青县、广西桂林市象山区、南平市政和县、遵义市赤水市、徐州市云龙区、重庆市荣昌区、安庆市迎江区、大庆市大同区
潍坊市青州市、镇江市润州区、常州市金坛区、益阳市桃江县、龙岩市武平县、常德市津市市、儋州市新州镇、泉州市石狮市
安顺市平坝区、迪庆香格里拉市、商丘市柘城县、许昌市襄城县、辽阳市太子河区、铜川市王益区、苏州市太仓市、宜春市上高县、周口市太康县、江门市开平市
福州市福清市、哈尔滨市呼兰区、泸州市纳溪区、嘉兴市海盐县、鞍山市铁东区、儋州市中和镇、湘潭市雨湖区、晋中市榆社县、新乡市卫辉市
眉山市丹棱县、甘孜甘孜县、开封市鼓楼区、佳木斯市郊区、三明市三元区
广西来宾市金秀瑶族自治县、鹤岗市南山区、晋中市太谷区、金华市金东区、大同市云冈区、绥化市绥棱县、黔南荔波县
宿迁市泗阳县、广西来宾市合山市、延安市延长县、上海市崇明区、天水市甘谷县
内蒙古巴彦淖尔市杭锦后旗、临高县新盈镇、广西百色市靖西市、内蒙古乌海市海勃湾区、定西市安定区、广西南宁市良庆区、遵义市仁怀市、儋州市新州镇
杭州市余杭区、中山市东升镇、北京市延庆区、内蒙古包头市昆都仑区、定安县黄竹镇、三亚市海棠区、昭通市巧家县、上海市徐汇区、榆林市定边县、宁夏银川市西夏区
定西市渭源县、绥化市兰西县、迪庆香格里拉市、湛江市坡头区、重庆市江津区、重庆市巴南区、宜春市宜丰县、延边汪清县、黔东南施秉县、邵阳市城步苗族自治县
汉中市勉县、遵义市仁怀市、南昌市西湖区、日照市岚山区、北京市通州区
三沙市西沙区、琼海市阳江镇、白沙黎族自治县七坊镇、七台河市勃利县、吉林市永吉县、东莞市南城街道、菏泽市巨野县、大理剑川县
内蒙古通辽市库伦旗、六安市舒城县、云浮市云城区、盐城市东台市、延安市洛川县、临沂市平邑县、中山市三乡镇、西安市新城区、哈尔滨市香坊区
咸阳市秦都区、西安市阎良区、舟山市岱山县、葫芦岛市绥中县、遵义市习水县、榆林市横山区、太原市清徐县、广西玉林市玉州区、六安市裕安区、广州市越秀区
长春市绿园区、广西北海市海城区、遵义市绥阳县、遂宁市蓬溪县、宜昌市西陵区
阳江市阳春市、杭州市临安区、宜宾市叙州区、周口市郸城县、哈尔滨市宾县、徐州市邳州市
亳州市谯城区、怀化市洪江市、杭州市建德市、金华市磐安县、上海市松江区
黔南贵定县、娄底市涟源市、运城市平陆县、永州市宁远县、吕梁市岚县、定安县龙河镇、烟台市莱山区、琼海市嘉积镇
400服务电话:123456(点击咨询)
金瓶梅 爱的奴隶 下载成人国产精品免费视频
金瓶梅 爱的奴隶 下载黄色催眠小说
金瓶梅 爱的奴隶 下载草莓视频在线观看免费完整:(1)123456(点击咨询)(2)123456(点击咨询)
金瓶梅 爱的奴隶 下载网曝门精品国产事件(1)123456(点击咨询)(2)123456(点击咨询)
金瓶梅 爱的奴隶 下载秘密教学漫画画免费读第10画
金瓶梅 爱的奴隶 下载国产尤物一区二区三区在线观看
维修服务智能预约提醒,避免遗忘:通过APP或短信方式,提前提醒客户维修预约时间,避免客户因忙碌而遗忘。
无论是工作日还是节假日,我们的售后服务团队都将坚守岗位,为您提供不间断的服务。
金瓶梅 爱的奴隶 下载日韩视频不卡
金瓶梅 爱的奴隶 下载维修服务电话全国服务区域:
哈尔滨市平房区、内蒙古赤峰市红山区、本溪市南芬区、天水市清水县、三门峡市灵宝市、琼海市会山镇
茂名市化州市、澄迈县文儒镇、商丘市民权县、张家界市慈利县、鸡西市虎林市
延边敦化市、亳州市利辛县、漯河市郾城区、九江市湖口县、重庆市石柱土家族自治县、鹤岗市兴山区、万宁市三更罗镇、陵水黎族自治县隆广镇、临汾市永和县、陵水黎族自治县光坡镇
红河石屏县、文昌市蓬莱镇、文昌市昌洒镇、武汉市黄陂区、抚顺市抚顺县、甘孜白玉县、株洲市天元区、榆林市横山区
孝感市大悟县、重庆市垫江县、茂名市化州市、岳阳市平江县、铜仁市德江县、丽水市缙云县、大同市广灵县、咸宁市嘉鱼县、三明市泰宁县、邵阳市邵东市
蚌埠市淮上区、湘西州永顺县、普洱市江城哈尼族彝族自治县、四平市双辽市、齐齐哈尔市建华区、海南兴海县
阿坝藏族羌族自治州茂县、阿坝藏族羌族自治州阿坝县、南阳市唐河县、贵阳市清镇市、赣州市赣县区、咸阳市杨陵区、昭通市盐津县、贵阳市观山湖区
陇南市康县、信阳市平桥区、南平市光泽县、保山市施甸县、东莞市凤岗镇、西宁市湟源县
吉林市丰满区、六安市霍邱县、琼海市长坡镇、六安市金寨县、庆阳市合水县、平顶山市石龙区、双鸭山市饶河县、内蒙古乌海市乌达区
重庆市綦江区、长春市南关区、汉中市镇巴县、内蒙古包头市石拐区、广西百色市那坡县、郑州市登封市、温州市龙湾区、长春市绿园区、惠州市惠东县、海西蒙古族乌兰县
松原市乾安县、厦门市翔安区、北京市西城区、肇庆市四会市、太原市万柏林区、三明市大田县、大理永平县
合肥市蜀山区、陵水黎族自治县提蒙乡、红河建水县、屯昌县新兴镇、南阳市邓州市
武威市凉州区、潍坊市安丘市、梅州市蕉岭县、萍乡市湘东区、齐齐哈尔市甘南县、临沧市临翔区、广西贺州市富川瑶族自治县
太原市阳曲县、湘西州凤凰县、北京市延庆区、内蒙古锡林郭勒盟阿巴嘎旗、清远市佛冈县、宣城市绩溪县、内蒙古呼伦贝尔市满洲里市、广西玉林市陆川县
成都市彭州市、中山市东凤镇、郴州市安仁县、天津市河北区、文昌市锦山镇、南充市南部县、郴州市苏仙区、常德市汉寿县、凉山西昌市
昭通市永善县、上海市金山区、琼海市博鳌镇、舟山市嵊泗县、益阳市桃江县、宁夏固原市西吉县
杭州市西湖区、宜春市袁州区、东莞市沙田镇、芜湖市繁昌区、蚌埠市蚌山区、滁州市南谯区、济南市历下区
淄博市高青县、常州市新北区、聊城市阳谷县、楚雄永仁县、本溪市明山区
广西来宾市象州县、信阳市浉河区、郴州市资兴市、东莞市石排镇、广安市邻水县、十堰市郧阳区、黑河市嫩江市、牡丹江市穆棱市、北京市丰台区
宜昌市兴山县、怀化市麻阳苗族自治县、金昌市永昌县、福州市台江区、朔州市右玉县
延安市甘泉县、德阳市绵竹市、雅安市芦山县、杭州市滨江区、黔东南黄平县、广西百色市平果市、泸州市合江县
广西柳州市柳城县、丹东市元宝区、遵义市桐梓县、延边安图县、怀化市麻阳苗族自治县
哈尔滨市木兰县、泰州市靖江市、吉林市昌邑区、武威市古浪县、渭南市大荔县、成都市青白江区、庆阳市正宁县、莆田市仙游县、蚌埠市怀远县
孝感市孝昌县、阜新市细河区、宁德市古田县、盐城市响水县、郴州市汝城县、北京市密云区、昭通市镇雄县、南充市南部县
马鞍山市当涂县、玉树治多县、内蒙古鄂尔多斯市准格尔旗、日照市莒县、武汉市江夏区、广西河池市南丹县、赣州市全南县、昭通市彝良县、榆林市榆阳区
哈尔滨市道里区、海东市民和回族土族自治县、大理剑川县、大兴安岭地区松岭区、咸宁市通城县、长春市二道区、平凉市华亭县、鹰潭市月湖区
绵阳市游仙区、赣州市信丰县、天津市南开区、吉安市庐陵新区、大兴安岭地区呼玛县
AI 能替代医生吗?专家们这样说
在医疗数字化浪潮中,人工智能(AI)正加速进入临床实践。从影像识别、检验报告到辅助决策,AI正在重塑医生的工作方式,也在悄然改变着患者的就诊体验。AI能取代医生吗?面对这位“智能医生”,患者该如何理解它、使用它?它又如何成为医生的“眼睛”与“大脑”?
近日,本报记者专访中国医学科学院阜外医院心律失常中心原主任、民盟中央卫生与健康委员会主任张澍,中国医学科学院肿瘤医院胸外科主任医师、民盟中央卫生与健康委员会副主任邵康,首都医科大学附属北京朝阳医院超声医学科副主任、农工党北京市委会联络工作委员会委员于泽兴,从心脏、肺部、超声诊断三个不同领域,探讨AI在临床中的角色与边界。
张澍:AI是“标准答案”而人的健康是主观题
当深度学习算法仅用0.8秒便可完成冠脉的三维重建,当神经网络在2000万份心电图中精准捕捉到异常波动,人工智能正在深刻改变心血管诊疗的基础逻辑。
“AI的本质是一套算法,它建立在海量的医学知识和临床数据之上。”张澍介绍,在临床应用中,配备AI技术的影像设备能够在极短的时间内,从成千上万张图像中精准定位异常病变点,协助医生识别早期心脏结构的异常、冠状动脉的钙化以及心肌的肥厚。“这种高效的判断,甚至能够超越人眼。”
在他看来,这正是人工智能的优势——速度快、处理量大、分析深入,最终目标是精准。然而,目前存在两种极端观点:一种认为AI已经能够取代医生,另一种则认为AI在医疗领域的应用并不可靠。张澍认为,通过大量案例和指南的“喂养”,AI能够迅速提供针对常见疾病和轻微病症的标准化诊断和建议。“你无法期望一个初出茅庐的年轻医生立即独立担当重任,然而,一个新入行的AI却能够整合众多资深医生的丰富经验,迅速提供标准化的解决方案。这使得AI成为辅助诊疗过程中的得力助手,尤其在处理常见疾病或那些已有标准化治疗方案的病例时,AI可充当‘虚拟医生’的角色。”
然而,张澍强调,这种能力并不能无限制地扩展。人工智能在识别“共性”疾病方面表现出色,但人类的健康问题往往是一道“主观题”,其中包含着复杂且难以量化的“个性”因素。在处理复杂的心血管疾病,如心律失常时,AI技术能够协助医生快速识别潜在风险和心电图异常。然而,要深入理解疾病发展的全身性原因和动态变化过程,医生的临床经验和对患者个体状况的精准评估则显得尤为重要。“心脏并非独立运作的器官,其健康状况及功能表现受到心理状态、整体环境、生活习惯等多种因素的共同作用。”张澍指出。
例如,焦虑的个体可能会经历胸闷和心悸等症状,这些不适感源于情绪对心脏功能的影响,而非心脏存在任何器质性问题。“即便AI技术再先进,目前它仍无法准确判断一个人是否正承受心理压力、睡眠障碍,或是家庭与环境的变动。目前我们所提供的训练数据远远不足,因为与‘心’相关的人的整体状态,往往不是仅凭临床‘指标+图像’就能完全阐释的。”张澍进一步补充道。
目前,随着AI技术从后台支持走向前台服务,它不再局限于为医生提供辅助决策,而是开始直接与患者互动,参与初步的问诊过程,问题也开始逐渐显现。“部分患者对‘AI问诊’平台抱有过分的信任,认为通过回答几个问题、获取一份报告便能替代与医生的面对面咨询”,张澍提醒,尽管AI平台能够利用算法模型初步识别患病风险并提供标准化建议,但由于它缺乏对“人心”的真正理解,有时反而可能导致病情延误。
“AI可以是一个优秀的‘起点’,但绝非‘终极诊断’系统。”张澍强调,特别是在心血管领域,许多疾病的早期迹象微弱到几乎难以察觉,例如偶尔的心悸、轻微的乏力,患者常常不以为意。然而,这些看似普通的症状背后,可能隐藏着严重的心律失常风险。这类复杂且隐蔽的病情,单凭一台AI、一次线上咨询,是无法实现精确识别的。
如何把握AI在现代临床实践中的应用?张澍生动地描述道:“从传统的水银血压计到现代电子血压监测器,从听诊器到先进的可穿戴心电监测设备,医学领域一直在进步和演变。AI的融入,正是这一持续发展过程中的一个环节,而且它代表了一次真正的革命。”
而对于患者而言,未来的医疗不是“人退AI进”,而是“人机共治”,将科技的速度与人性的温度融为一体,用AI的“理性判断”与医生的“经验推理”实现更精准的诊疗。医学AI的终极形态,并非取代人类在希波克拉底誓言下的深思,而是将机器数据的确定性转化为临床过程的潜在可能性,加速并优化诊疗流程。在这个人机共存的诊疗新时代,每一次心跳既是生物电信号,也是生命故事的独特旋律。
邵康:AI是个“好学生”但还不是“好医生”
作为深耕一线的资深胸外科专家,邵康对人工智能在医疗领域的应用有着深刻洞察:“AI就像个过目不忘的超级学霸,堪称医生的‘超级大脑’,是极具潜力的临床助手。”
从最基础的病历书写、病情录入,到门诊中的影像识别、辅助诊断,再到初步治疗方案的建议,AI几乎可以覆盖医生工作的各个环节,邵康介绍:“它的最大优势是稳定、全面、不疲劳,能承担大量重复性工作。尤其在图像处理方面,AI的表现已经超过了许多经验尚浅的医生。”
以肺结节筛查为例,传统阅片模式下,医生每看一个病人,需要手动翻阅300至400张 CT断层图像,不仅耗时耗力,还易出现视觉疲劳导致漏诊。而 AI凭借深度学习算法,可在数秒内完成全肺扫描,不仅能精准标注病灶位置,还能量化分析结节大小、密度、边缘特征等参数,并基于大数据模型给出初步良恶性概率评估。
“以往对一位患者的影像判读需5至10分钟,现在 AI辅助下仅需数秒即可完成初筛。”邵康提到,这种效率的提升,显著优化了诊疗流程,让医生得以将更多精力投入到复杂病情研判与个体化治疗方案制定中。
对于肺癌影像诊断的准确率,AI已能与经验丰富的主治医师比肩。临床实践中,医生只要输入准确的疾病相关信息,AI就可以根据指南、共识给出全面、准确的疾病诊疗方案供医生参考。
邵康直言:“对于知识更新滞后的从业者而言,部分成熟的AI系统确实展现出更强的知识储备与分析能力。”然而,在肯定技术优势的同时,邵康反复强调 AI的临床应用边界:“医学的本质是针对‘生病之人’,而非仅仅是‘疾病’。”
临床实践中,患者的基础状况、心理状态、生活环境等信息,往往是左右诊疗决策的关键变量。这些难以量化的“隐藏参数”,恰是 AI当前的技术盲区。
于泽兴:超声不是“看图说话”那么简单
当人们谈论人工智能对医疗行业的影响时,影像科常常被视为“最容易被AI替代”的领域,甚至有人断言,AI时代最先“下岗”的,将是影像科医生。
“确实,从很早开始,就有团队尝试将AI引入影像诊断,尤其在放射科领域应用较多。”于泽兴介绍,像X光片、CT片这类标准化的平面图像,非常适合深度学习算法进行训练与识别,因此AI在这些领域的发展起步较快。
不过,作为医学影像中的重要分支,超声科的情况却远比想象中复杂。于泽兴指出,虽然超声也是较早引入人工智能技术的科室之一,并积累了一定的探索经验,但要让AI真正扮演临床“决策者”的角色,还面临诸多挑战。
在甲状腺、乳腺等结构清晰、图像稳定的部位,有的软件已经具备初步的辅助诊断能力,可以在医生操作过程中自动识别结节并评估其风险等级,其表现相当于一位年轻的主治医生。
然而,这种应用目前仍局限于少数场景。“因为超声检查本质上是一个动态探查的过程,它不只是‘看图说话’,医生需要一边操控探头,一边观察屏幕上不断变化的图像,在瞬息之间捕捉关键线索。”于泽兴表示,这一过程中,医生的感知、操作和认知能力缺一不可,经验远比图像本身更为关键。
“胖的人、瘦的人,器官的位置和形态不一样,超声医生扫查时的角度、范围、按压的力度都不同,需要实时调整、因人而异。”于泽兴说。“这些操作细节,都是AI目前难以胜任的。”
那么,如果仅从图像分析来说,患者是否可以上传报告,在AI上获取“诊断建议”?
于泽兴提醒,这种做法存在不小的安全隐患,比如甲状腺的某些结节,从图像上看与恶性肿瘤极为相似,AI可能会直接标红提示风险,“但如果结合患者既往的检查记录,可能会发现这些结节原本较大,随着时间逐渐缩小,是一种良性的退变结节。而这种需要综合病史、遗传史乃至病程变化作出的判断,是当前AI尚不具备的能力。”
不过,应该看到的是,在目前超声医生资源紧张的背景下,无论是三甲医院还是基层机构,合理引入AI,将在一定程度上缓解人力压力。“技术无法取代医生的经验和判断,但它可以成为医生的工具,为他们加一双‘眼’、多一双‘手’,把专业力量用在更需要的地方。”于泽兴说。(完)(《中国新闻》报刘益伶报道) 【编辑:张子怡】
相关推荐: